Week 2 - Friday

COMP 2100

Last time

- What did we talk about last time?
- Java Collections Framework (JCF)
- Computational complexity
- Big Oh notation

Assignment 1

Assignment 2

Project 1

Questions?

Back to complexity

Mathematical issues

- What's the running time to factor a large number N?
- How many edges are in a completely connected graph?
- If you have a completely connected graph, how many possible tours are there (paths that start at a given node, visit all other nodes, and return to the beginning)?
- How many different *n*-bit binary numbers are there?

Formal definition of Big Oh

- Let f(n) and g(n) be two functions over integers
- f(n) is O(g(n)) if and only if
 - $f(n) \le c \cdot g(n)$ for all n > N
 - for some positive real numbers c and N
- In other words, past some arbitrary point, with some arbitrary scaling factor, g(n) is always bigger

What's the running time?

```
int count = 0;
for (int i = 0; i < n; i += 2) {
  for (int j = 0; j < n; j += 3) {
    ++count;
  }
}</pre>
```

What's the running time?

```
int count = 0;
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
   if (j == n - 1) {
       i = n;
   ++count;
```

Hierarchy of complexities

Here is a table of several different complexity measures, in ascending order, with their functions evaluated at n = 100

Description	Big Oh	<i>f</i> (100)	
Constant	0(1)	1	
Logarithmic	$O(\log n)$	6.64	
Linear	O(n)	100	
Linearithmic	$O(n \log n)$	664.39	
Quadratic	$O(n^2)$	10000	
Cubic	$O(n^3)$	1000000	
Exponential	$O(2^n)$	1.27×10^{30}	
Factorial	O(n!)	9.33×10^{157}	

What's log?

- The log operator is short for logarithm
- Taking the logarithm means de-exponentiating something

$$\log 10^7 = 7$$
$$\log 10^x = x$$

What's the log 1,000,000?

What's the running time?

```
int count = 0;
for (int i = 1; i <= n; i *= 2) {
    ++count;
}</pre>
```

Logarithms

- Formal definition:
 - If $b^x = y$
 - Then $\log_b y = x$ (for positive b values)
- Think of it as a de-exponentiator
- Examples:
 - $\log_{10}(1,000,000) =$
 - $\log_3(81) =$
 - $\log_2(512) =$

log base 2

- In the normal world, when you see a log without a subscript, it means the logarithm base 10
 - "What power do you have to raise 10 to get this number?"
- In computer science, a log without a subscript usually means the logarithm base 2
 - "What power do you have to raise 2 to to get this number?"

$$\log 2^8 = 8$$
$$\log 2^y = y$$

What's the log 2,048? (Assuming log base 2)

log math

- $\bullet \log_b(x^y) = y \log_b(x)$
- Base conversion:
 - $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$
- As a consequence:
 - $\log_2(n) = \frac{\log_{10}(n)}{c_1} = \frac{\log_{100}(n)}{c_2} = \frac{\log_b(n)}{c_3} \text{ for } b > 1$
 - $\log_2 n$ is $O(\log_{10} n)$ and $O(\log_{100} n)$ and $O(\log_b n)$ for b > 1

More on log

- Add one to the logarithm in a base and you'll get the number of digits you need to represent that number in that base
- In other words, the log of a number is related to its length
 - Even big numbers have small logs
- If there's no subscript, \log_{10} is assumed in math world, but \log_2 is assumed for CS
 - lacktriangle Also common is \ln , the natural \log , which is \log_e

Log is awesome

- As we said, the logarithm of the number is related to the number of digits you need to write it
- That means that the log of a very large number is still pretty small
- An algorithm that runs in log n time is very fast

Number	\log_{10}	\log_2
1,000	3	10
1,000,000	6	20
1,000,000,000	9	30
1,000,000,000,000	12	40

Big Oh, Big Omega, Big Theta

Formal definition of Big Oh

- Let f(n) and g(n) be two functions over integers
- f(n) is O(g(n)) if and only if
 - $f(n) \le c \cdot g(n)$ for all n > N
 - for some positive real numbers c and N
- In other words, past some arbitrary point, with some arbitrary scaling factor, g(n) is always bigger

Different kinds of bounds

- We've been sloppy so far, saying that something is $\mathrm{O}(n)$ when its running time is proportional to n
- Big Oh is actually an **upper bound**, meaning that something whose running time is proportional to n (like 42n + 7)
 - Is O(n)
 - But is also $O(n^2)$
 - And is also $O(2^n)$
- If the running time of something is actually proportional to n, we should say it's $\Theta(n)$
- We often use Big Oh because it's easier to find an upper bound than to get a tight bound

All three are useful measures

- O establishes an upper bound
 - f(n) is O(g(n)) if there exist positive numbers c and N such that $f(n) \le c \cdot g(n)$ for all n > N
- ullet Ω establishes a lower bound
 - f(n) is $\Omega(g(n))$ if there exist positive numbers c and N such that $f(n) \geq c \cdot g(n)$ for all n > N
- Θ establishes a tight bound
 - f(n) is $\Theta(g(n))$ if there exist positive numbers c_1 , c_2 , and N such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all n > N

Tight bounds

- ullet O and Ω have a one-to-many relationship with functions
 - $4n^2 + 3$ is $O(n^2)$, but it's also $O(n^3)$ and $O(n^4 \log n)$
 - $6n \log n$ is $\Omega(n \log n)$ but it's also $\Omega(n)$
- Θ is one-to-many as well, but it has a much tighter bound
- Sometimes it's hard to find Θ
 - Upper bounding isn't too hard, but lower bounding is difficult for many real problems

Facts

- 1. If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))
- 2. If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))
- 3. an^k is $O(n^k)$
- 4. n^k is $O(n^{k+j})$, for any positive j
- 5. If f(n) is cg(n), then f(n) is O(g(n))
- 6. $\log_a n$ is $O(\log_b n)$ for integers a and b > 1
- 7. $\log_a n$ is $O(n^k)$ for integer a>1 and real k>0

Binary search example

- Implement binary search
- How much time does a binary search take at most?
- What about at least?
- What about on average, assuming that the value is in the list?

Complexity practice

- Give a tight bound for $n^{1.1} + n \log n$
- Give a tight bound for 2^{n+a} where a is a constant
- Give functions f_1 and f_2 such that $f_1(n)$ and $f_2(n)$ are O(g(n)) but $f_1(n)$ is not $O(f_2(n))$

Upcoming

Next time...

- Abstract data types (ADTs)
- Bags and ArrayList

Reminders

- No class Monday!
- Read section 1.3
- Finish Assignment 1
 - Due tonight by midnight!
- Start Assignment 2
 - Due next Friday by midnight
- Keep working on Project 1
 - Due Friday, September 12 by midnight